1452

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

A Parallel Jacobi-Embedded
Gauss-Seidel Method

Afshin Ahmadi
Amin Khademi

, Student Member, IEEE, Felice Manganiello,
, and Melissa C. Smith

, Senior Member, IEEE

Abstract—A broad range of scientific simulations involve solving large-scale computationally expensive linear systems of equations.
Iterative solvers are typically preferred over direct methods when it comes to large systems due to their lower memory requirements and
shorter execution times. However, selecting the appropriate iterative solver is problem-specific and dependent on the type and symmetry
of the coefficient matrix. Gauss-Seidel (GS) is an iterative method for solving linear systems that are either strictly diagonally dominant or
symmetric positive definite. This technique is an improved version of Jacobi and typically converges in fewer iterations. However, the
sequential nature of this algorithm complicates the parallel extraction. In fact, most parallel derivatives of GS rely on the sparsity pattern of
the coefficient matrix and require matrix reordering or domain decomposition. In this article, we introduce a new algorithm that exploits the
convergence property of GS and adapts the parallel structure of Jacobi. The proposed method works for both dense and sparse systems
and is straightforward to implement. We have examined the performance of our method on multicore and many-core architectures.
Experimental results demonstrate the superior performance of the proposed algorithm compared with GS and Jacobi. Additionally,
performance comparison with built-in Krylov solvers in MATLAB showed that in terms of time per iteration, Krylov methods perform faster
on CPUs, but our approach is significantly better when executed on GPUs. Lastly, we apply our method to solve the power flow problem,
and the results indicate a significant improvement in runtime, reaching up to 87 times faster speed compared with GS.

Index Terms—Linear systems, iterative methods, parallel, PJG, Gauss-Seidel, Jacobi, Krylov, SpMV performance, power flow

1 INTRODUCTION

ECHNIQUES for solving linear algebraic systems have
Talways been a subject of interest in the scientific commu-
nity because the simulation of many complex physical prob-
lems relies on the solution of these equations. Generally,
there are two different techniques for this purpose: direct and
iterative. Direct methods can provide the exact solution
within a finite number of steps, while iterative methods start
with an initial guess and compute iteratively to find a close
approximation. The computation cost of iterative methods
for full n x n matrices is on the order of n? for each iteration,
compared with the overall 2n? required by direct techniques
[1]. Moreover, iterative methods require less computational
resources, such as memory, compared with direct methods.
Therefore, iterative methods are generally preferred when it
comes to large systems because the dense fill-in factor of
direct methods scales intensely with respect to the matrix
size. For instance, solving boundary integral equations and
the radiosity equation often leads to large dense matrices,

o Afshin Ahmadi and Melissa C. Smith are with the Holcombe Department
of Electrical and Computer Engineering, Clemson University, Clemson,
SC 29634 USA. E-mail: {aahmadi, smithmc)@clemson.edu.

o Felice Manganiello is with the School of Mathematical and Statistical
Sciences, Clemson University, Clemson, SC 29634 USA.

E-mail: manganm@clemson.edu.

o Amin Khademi is with the Department of Industrial Engineering, Clemson

University, Clemson, SC 29634 USA. E-mail: khademi@clemson.edu.

Manuscript received 30 May 2020; revised 10 Jan. 2021; accepted 12 Jan. 2021.
Date of publication 15 Jan. 2021; date of current version 28 Jan. 2021.
(Corresponding author: Afshin Ahmadi.)

Recommended for acceptance by K. Mohror.

Digital Object Identifier no. 10.1109/TPDS.2021.3052091

and the solution of partial differential equations often results
in large sparse systems. Iterative methods for solving linear
systems generally fall into the following categories:

e Stationary methods (e.g., Gauss-Seidel (GS), Jacobi,
Successive Over-Relaxation (SOR), etc.)

e Methods based on Krylov subspace (e.g., Conjugate
Gradient, Generalized Minimal Residual, etc.)

Among the stationary methods, the convergence rate of
GS is typically better than Jacobi but lower than SOR. How-
ever, finding the optimal relaxation parameter of SOR is dif-
ficult and computationally expensive for many problems
[2]. The GS approach is widely employed as a smoother for
the sparse linear system arising from the discretization of
the Poisson Equation and is considered superior to other
preconditioners such as Jacobi [3].

Inspired by the Jacobi and GS methods, this research
demonstrates a new algorithm for solving systems of linear
equations that exploits the convergence property of GS and
adapts the parallel structure of Jacobi. We base our iteration
on the execution of a sequence of partial Jacobi iterations,
focusing on a partition of the equations in the system. The
parallel structure of Jacobi improves the computation time
of each iteration, and the superior convergence rate of GS
helps reduce the number of iterations to reach the solution.
These characteristics allow our method to achieve better
performance compared with these two methods alone.

Recent advancements in computational resources and
their widespread availability have allowed researchers to
utilize parallel computing approaches to develop fast linear
solvers that can address the growth in size and complexity of
scientific problems [4], [5], [6], [7], [8]. Among the iterative

1045-9219 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8593-5889
https://orcid.org/0000-0002-8593-5889
https://orcid.org/0000-0002-8593-5889
https://orcid.org/0000-0002-8593-5889
https://orcid.org/0000-0002-8593-5889
https://orcid.org/0000-0002-5281-8715
https://orcid.org/0000-0002-5281-8715
https://orcid.org/0000-0002-5281-8715
https://orcid.org/0000-0002-5281-8715
https://orcid.org/0000-0002-5281-8715
https://orcid.org/0000-0003-0798-8536
https://orcid.org/0000-0003-0798-8536
https://orcid.org/0000-0003-0798-8536
https://orcid.org/0000-0003-0798-8536
https://orcid.org/0000-0003-0798-8536
mailto:aahmadi@clemson.edu
mailto:smithmc@clemson.edu
mailto:manganm@clemson.edu
mailto:khademi@clemson.edu

AHMADI ETAL.: A PARALLEL JACOBI-EMBEDDED GAUSS-SEIDEL METHOD

methods, Jacobi is a parallel algorithm that compared with
GS, is inherently sequential due to the dependencies in
the variables. However, various parallel derivatives of GS
exist as well, mostly for sparse matrices and based on a
multi-color ordering of grid points. A well-known parallel
implementation of GS based on the coloring scheme is called
red-black (RBGS), which is one of the most widely used
smoothers for the problems [3]. However, exploiting paral-
lelism in this method depends on the sparsity pattern of the
system matrix due to the ordering requirement of the matrix
rows/columns to achieve a specific structure [9].

Parallel GS implementations are regularly developed for
either directly solving a problem [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19] or as a smoother in multigrid meth-
ods [3], [20], [21], [22], [23], [24]. A distributed memory
implementation was presented in [12] for solving linear
algebraic systems (Axz = b), where the n x n matrix A and
the right-hand side vector b are first split among different
computational nodes as row-wise blocks. The GS iteration is
then performed with a natural ordering starting from Node
1, and only the updated values of the z vector are
exchanged in the cluster to reduce the impact of communi-
cation delay. A 2x speedup for a linear system with n =
24,000 was observed. This technique is useful for very large
systems that cannot be stored in the memory of a single
machine. However, the overall efficiency is low since the
majority of the processors are idle at the same time.

In [14], Courtecuisse and Allard developed a block-based
parallelization strategy for dense GS, in which the reliance
on global synchronizations was reduced. The average
speedup reached 10x for a system size of 10,000. The
approach applies to both dense and sparse matrices. Parallel
solutions of SOR (relaxed GS) on the graphics processing
unit (GPU) were also obtained in [15]. This method consists
of a new domain decomposition and an alternate loop tiling
technique. The maximum speedup achieved for a problem
size of 28,672 was 2.8 x. Another parallel implementation
based on domain decomposition for the solution of linear
equation systems related to the discretization of partial dif-
ferential equations was developed in [20]. The advantage of
this method is that the convergence rate is close to the origi-
nal GS. However, no analysis regarding execution time was
provided in the paper.

Brike et al. [25] developed a parallel block-smoothing
algorithm based on block Jacobi and chaotic block GS and
achieved a 20x speedup on multicore CPUs and around
45x speedup on GPUs. A parallel GS algorithm for sparse
power systems based on matrix ordering techniques
reached a relative speedup of 11.6x for a matrix on the
order of 6,000 [16]. However, the performance of this
approach deteriorates when applied to multigrid problems
due to the increase in the number of required colors [12],
[21]. A variant of parallel block GS for block tri-diagonal lin-
ear systems based on block reordering of the coefficient
matrix has been developed in [17]. Compared with multi-
coloring methods, parallel block GS has the same spectrum
as block GS; thus, the asymptotic rate of convergence
remains close to the original approach.

This literature review shows that synchronization primi-
tives (e.g., mutex, locks, signals, events, etc) and communi-
cation delay between distributed nodes are the main factors

1453

affecting the scalability and speed of parallel GS implemen-
tations. For these reasons, when it comes to large scale sys-
tems, naturally parallelizable but slow convergent methods
such as Jacobi are sometimes favored over methods with a
better convergence rate that are a sequential or semi-parallel
algorithms. In this case, there is no guarantee that the
selected method will converge to the solution or that the
execution time will improve. Our Parallel Jacobi-Embedded
Gauss-Seidel (PJG) method is designed to address these
challenges by exploiting the parallel structure of Jacobi and
superior convergence rate of GS. The PJG method differs
from the block versions of GS and Jacobi as we do not
divide the matrix A and the vectors into blocks.

2 CONTRIBUTIONS

The main contributions of this study are summarized as
follows:

e The proposed algorithm applies to both sparse and
dense linear systems and no precomputation stage is
needed. Most parallel implementations of GS are
designed for sparse systems and require matrix reor-
dering or domain decomposition.

e Implementation in both multicore and many-core
architectures is straightforward since synchroniza-
tion primitives are not required. In distributed mem-
ory architectures, blocks can be distributed among
different nodes, where each machine can concur-
rently work on the problem and utilize parallel com-
puting to finish the task.

e The proposed method converges for the class of
strictly diagonally dominant and irreducibly diago-
nally dominant matrices (Theorems 6 and 7). One key
step is to provide a novel representation of involved
matrices in the algorithm structure (Egs. (16) and
(17)). Our analysis sheds light on the potential impact
of variable choice for parallelization and speed of con-
vergence (Corollary 8). The proposed method also has
a faster convergence rate than Jacobi in a subclass of
the above-mentioned matrices (Proposition 10).

e The proposed method is tested on the current state-
of-the-art multicore and many-core hardware archi-
tectures and a comprehensive performance study is
provided. Experimental results for dense linear sys-
tems demonstrate that the average number of itera-
tions for the proposed algorithm is observably close
to GS and the average execution time is up to 7x and
85x faster than GS on CPU and GPU, respectively.
However, due to some technical limitations in MAT-
LAB, which will be discussed in Section 4, the GPU
implementation of the proposed algorithm is not well
optimized and more speedup is expected if the kernel
is developed in other programming platforms.

e Aregression model is developed to estimate the per-
formance of matrix-vector multiplication given the
matrix characteristic and the processor specifications.
This information is useful when it comes to selection
of an optimal hardware platform or estimating the
performance of various algorithms, including itera-
tive solvers.

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

1454

e We modified the GS implementation of power flow
algorithm to substitute the GS solver with the pro-
posed method, and the execution time was reduced
from 79 minutes to less than a minute for a 2736-bus
system. Power flow analysis is a widely used study
in power systems.

3 PROPOSED METHOD

3.1 Formulation and Convergence Analysis

Let A € Mat,»,(R) and b € R" and consider the linear sys-
tem Az =b. Let A=D — L —U be the decomposition of
matrix A in a diagonal matrix D, a strictly lower triangular
matrix L and a strictly upper triangular matrix U. The follow-
ing Jacobi (Eq. (1)) and GS (Eq. (2)) algorithms are used to
iteratively solve the equation Az = bwhen A = (a;), ;<, 18
strictly diagonally dominant, i.e.,

n

laiil > Y iy,

J=Lg#

for i € [n] := {1,...,n}, or irreducibly diagonally dominant,
meaning that A is irreducible,

n

laii| > Z |ai jl,

J=L#i

for all ¢ € [n], and the inequality is strict for at least one i €
[n]. Given z; € R"

e =D ML+ U)ay +D7'b (1)
zpp1 = (D — L) 'Uz+ (D —L)'b. (2)

We propose a generalization of these iterative methods
that can be implemented via parallel computing. The method
sequentially updates the entries of a vector as follows. Given
a partition of variables z, the Jacobi method restricted to the
variables of the first partition is used to update the entries of
the vector belonging to the same partition. This step can be
performed in parallel. The updated vector is then passed as
an input to the Jacobi method restricted to the variables of
the second partition to update the entries of the vector
belonging to the same partition. The updated vector is then
used to update its entries belonging to the third partition of
variables and this procedure continues until all of the entries
are updated. This sequence is considered one iteration of the
algorithm. We move to the next iteration until a stopping cri-
teria is triggered. An appealing feature of our algorithm is
that it uses the Jacobi method, which can be implemented in
parallel, and enjoys a convergence rate closer to the GS
method, as we will show in Section 7. That is, our algorithm
combines the advantages of both the Jacobi and GS methods.

To formalize this idea we begin with the following defini-
tion that facilitates variable partitioning.

Definition 1. The set of logical matrices P = {P;|i € [t]} C
Mat,«,(R) is @ decomposition of the identity (Dol) in R”,
or simply Dol, if 3_, P, = I. We call partial identities the
elements of a decomposition of the identity.

Let P ={P,|i € [t]} be a Dol. At the beginning of itera-
tion k, let z1¢ := x;, and define for ¢ € [t]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

Ty = P [D7N L+ U)xpe—1 + D7'0) + (I = Pr)agy

4 . 3
= (PD"YL+U)+1—P)xre1+ PD'D,

and

LTk41 = Thyt- (4)

Hereafter, given the matrix decomposition A = D — L— U,
we use the notation M = D!(L + U). One can show that
Egs. (3) and (4) can be written as

1
o = | [(PM + 1T = P

1=t

+<§

=1

(5)

J+1
[Tpy+1-P)

i=t

P7> D™'b,

which shows the iterative nature of the proposed algorithm.
Next, we show that our proposed method is a generaliza-
tion of both the Jacobi and the GS methods. Clearly, for¢t = 1,
the recursion defined by Eq. (5) is the same recursion of the
Jacobi method defined by Eq. (1). Therefore, the Jacobi
method is a special case of the proposed, more general
method. The same is true for the GS method but first we pres-
ent several lemmas that will be used to prove this claim. In
particular, Lemmas 2, 3, and 4 explore some properties of the
matrices that appear in the proof of the main theorems.

Lemma 2. Let P ={P;|i € [t]} C Mat,«,(R) be a Dol. Then
the following relations hold.

PP =0, for1<i,j<t. ©

P?=P, for1<i<t.)
i—1

B([—ZPJ) =0, and ®)
j=1

R(I—ZP,):B:, for1<i<t. ©)
j=1

The proof of Lemma 2 is based on standard results in lin-
ear algebra and properties of P;s.

Lemma 3. Let P; € Mat,,«,,(R) be such that (P,;)M =1 and the
remaining entries are 0 for i € [n] and M € Mat,.,(R). For
d > 1 it holds that

n
M'= Y P,MP,MP,---P,

iq

MP,

idt1

(10)

This lemma can be proven by induction on the exponent
and by using the relations of Lemma 2.

Lemma 4. Let P ={P,|i € [t]} C Mat,»,(R) be a Dol with
t > 2. For a matrix M € Mat,,«,(R), the matrix

T= > PMP,

< g<t

is a nilpotent matrix with index less than or equal to t.

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

AHMADI ETAL.: A PARALLEL JACOBI-EMBEDDED GAUSS-SEIDEL METHOD

Proof. We will prove that 7! = BbMP,_{MP,_5--- P,MP;,
which implies that 7" = 0 by Eq. (6). We prove this by the
induction on ¢, meaning the cardinality of the Dol.

If t = 2, then trivially T' = P, MP,. Let the statement be
true for any Dol of cardinality ¢, let us prove that it holds
true also fora Dol P ={P,|i=1,...,t + 1} C Mat,x,(R)
of cardinality ¢ + 1. Define the Dol P of cardinality ¢ with
partial identities P=P for i=1,..,t—1 and P, =
P, + P,;;. By induction hypothesis we have that

t—1
1= (>]%MP() =PMP,_MP,_5---B,MP,.

< j<t
It follows that

t

—1
T = (T + BHMPt)(
i=0

t—1\ 1l
< i)TmHMBY1>

(T + P MP)T'™ = T' 4 Py MPT'!

)

= Py MPMP_y - - P,MP,.

a
The following property holds for nilpotent matrices. Let

T € Mat,,(R) be a nilpotent matrix with nilpotency index
t, then I — T is invertible and

t—1

=> T

i=0

(I-7)" (11)

Next, we show that the GS method is a special case of the
proposed method.

Proposition 5. For P; € Mat,,,,,(R) be such that (F;);; =1
and the remaining entries are 0 for all i € [n], the recursion
defined by Eq. (4) is the same recursion of the GS method
defined by Eq. (2).

Proof. The matrices P, for 1 <4 < n satisfies the hypotheses
of Lemma 3. By induction on ¢ > 2 and with the help of
the previous lemmas, it holds that Eq. (3) is equivalent to

Tpy = 5(5)%1%0 +)/(g)b, (12)
where, if
- ¢
A=) P,D'LP,---P,D'LP,, +> P,
>y >I-~->i,]+1 =
8(6) =AM —1I)+1, 13)
and
y({) = AD™, (14)
Finally it holds that

8(n) = <§(D]L)~7 + 1) (M—1)+1

=1

=(I-D'Ly'M—-1)+I=(D+L)"'U,

1455

and

y(n) 2

’ (ni(D-IL)f + 1) Dl'=(D+1L)"

J=1

since DL is an nilpotent matrix with nilpotent expo-
nent at most n. This concludes the proof. 0

It is essential to prove that our proposed method con-
verges to the solution of the linear system. In [26], the author
shows that if A is either a strictly diagonally dominant or
irreducibly diagonally dominant, then the Jacobi and GS
methods converge to the solution. We prove that our method
converges for the same class of matrices for any Dol. We
establish this result in two steps. First, we prove in Theorem
6 that the solution A~'b of Az = bis a fixed point of the itera-
tive procedure presented in Eq. (5). Then, we show in Theo-
rem 7 that the iterative procedure converges. Therefore, our
proposed algorithm converges to the solution of the system.
The difficulty in proving these results is that matrices P,M +
I — P; do not commute and standard results do not apply. For
example, the bounds on spectral radius of summation and
multiplication of matrices hold true only for commuting
matrices. We address these challenges by exploiting the spe-
cial structure of the produced matrices, by developing a
novel representation of the involved terms, and by invoking
Gersgorin Circle Theorem and Taussky’s Theorem.

Theorem 6. Let A be an invertible n x n matrix with decompo-
sition A =D — L — U with D invertible. Furthermore, let
{P;|i € [t]} bea Dol. Then A'b is a fixed point of Eq. (5).

Proof. In order to prove that
1
A =T[(PM+I-P)A "D

(5

J+1

HPM—i—I—B)

P]~> D',
>D-1A I

(15)

it is sufficient to prove that

t

f[PM+1-P) (Z
i=t

=1

ﬁ(PM+I p)

By induction and with the help of Lemma 2, it is possi-
ble to prove that

t Jj+1 t—1
> H (PM+1—P)|P;= > Py, MP,---P,MP,
= i<T<ise
t—1)
=y =0~
j=0
(16)

where T'= 3", _ ., P;MP, and the last equality is a conse-
quence of Lemma 4 and Theorem 11. Moreover, by recur-
sively using the relation

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

1456

J J+1
[[(PM+1-P)=]](PM+1-P)PM
i=t i=t
G4 G
+][(PM+1-P)-T[(PM+1-P)P,

i=t i=t

we obtain that

1 t

[[Pr+1-P)=3"

i=t =1

j+1
[[(Pr+1-P)

i=t

PM+1

t |j+1

[[Pr+1-p)

i=t

P a7

J=1
Wa-r)y M 1—(-T1)"

=(I-T7)'(M-1)+1.

Since D~'A =TI — M, we obtain that the right-hand
side of Eq. (15) becomes

I-T)'"M-D+I1+(I-T)"'"I-M)=1
O

Theorem 7. Let A be either a strictly diagonally dominant or an
irreducibly diagonally dominant matrix and {P;|i € [t]} be a
Dol. Then

1
p(HRM+I—B> <1,

i=t

where p denotes the spectral radius.

Proof. First, we show the result for strictly diagonally domi-
nant matrices. Recall that in the proof of Theorem 6, we
showed that

1
[[PpM+1-P=-T)"(M~1)+1.
i=t

Matrix M = (mj;),_; ., has zero diagonal and since A is

strictly diagonally dominant, »>7_, |m;;| < 1 for i € [n].

For an eigenvalue A of (I — T) '(M — I) + I it holds that

0= det(M— (I—T)"(M—1) —1)
=det(I —T) "det(A\(I = T) — M +T).

Since by Lemma 4 det((I — T)™") # 0, then det(\(I — T')—
M+T)=0.Let By, =\XI—-T)— M+ T. We show that if
|A| > 1, B, is not singular, which gives us the result. Note
that the entries of matrix 7" are either O or the entries of M
based on P;s. It follows that B) is a matrix with X on all
diagonal entries and either —m,; or —Am,; based on matrix
T otherwise. Also, if A > 1, then the sum of the absolute
values of all non-diagonal entries in each row of B) =
(bij)1<; j<n is less than A because

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

n n
D Ibigl < A magl < (AL
=1 =1

Let K;:={z€C:|z—A <> [bj| <1} denote the
Gershgorin disk of B). By the Gershgorin Circle Theo-
rem, all eigenvalues of B) belong to K = |J !, K;. How-
ever, since [A| > 1, 0 does dot belong to K. Therefore, if
[A| > 1then

det(/\l — (=T (M-T) - 1) £0.

The theorem follows by contraposition.

For irreducibly diagonally dominant matrices, all of
the previous arguments hold, but in the last step, 0
belongs to the boundary of K. However, by Taussky’s
Theorem, 0 must belong to all Ks for irreducible matrices,
which is impossible because by the definition given at the
beginning of the section for an irreducibly diagonally
dominant matrix, there exists at least a row for which the
absolute value of the diagonal is strictly greater than the
sum of the absolute values of the non-diagonal entries. O

The proof of Theorem 7 is insightful in that it can help
identify partitions that may have a faster convergence rate.
First, we state the following corollary.

Corollary 8. Let K" = \J ! K] and K7 = |J [, K; denotes
respectively the union of the Gershgorin disks that contain all
of the eigenvalues of D~ (L + U), the iteration matrix of Jacobi,
and (I —T) (M —1I)+ 1, the iteration matrix of the pro-
posed method. Then, K* K.

Proof. All eigenvalues corresponding to Jacobi satisfy
det(A\] — M) =0 and to the proposed method satisfy
det(A\(I —T) — M +T) = 0. For i € [n], all disks K/ and
K[are centered at \. The radius of K is: Y, [m
whereas the radius of K/ is

Do myl A DD mal,

i#i ¢ ST J#i, jest

where ST := {j € [n]|t;; # 0}. Since A < 1 it follows that
K/CK!. O

As can be seen from the proof above, the radius of our pro-
posed disk is smaller due to the term } ;. ¢r A|m;;|, which
depends on S7. Therefore, if matrix 7" is chosen properly, the
radius of the disk is smaller and a faster convergence may be
achieved.

Nonetheless, Corollary 8 does not guarantee that the con-
vergence rate of the proposed method is better than Jacobi.
Next, we use a generalization of Stein-Rosenberg Theorem
to show that indeed our method has a faster convergence
rate than Jacobi. To that end, we use the following result.

Theorem 9 ([27]). Let A= M, — N, = My — Ny be two
M-splittings of A (i.e., M;s are M-matrices and N; > 0 for
i=1,2), Ny # Ny, No#0, and Ny > N,. Then, exactly
one of the following holds:

1) 0<p(My'Ny) < p(M'Ny) < 1;

2) p(My'Ny) = p(M;'Ny) = 1;
3) 1< p(M{'Ny) < p(My'Ny).

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

AHMADI ETAL.: A PARALLEL JACOBI-EMBEDDED GAUSS-SEIDEL METHOD

Recall that the basic Stein-Rosenberg takes irreducible
A=1-L—-U,where L,U >0, and L,U # 0. We also con-
sider this class of matrices to show that the proposed
method produces a faster convergence rate than Jacobi. In
particular, we have the following result.

Proposition 10. Let A be a strictly diagonally dominant or irre-
ducibly diagonally dominant matrix with diagonal entries
equal to 1 and L,U >0, and L,U # 0. Given a Dol P =
{P;|i € [t]}, it follows that

1

p(HR-MJrI R-) < p(L+U).

it

Proof. Since D = I, for Jacobi the iterative procedure is given
by zy41 = (L + U)zy + b, and for the proposed methods is
(I = T)xp = (M —T)xj, + b from Eq. (5). For the class of
matrices A = [— L — U. First, we need to show that I — T
is an M-matrix. Note that all of the non-diagonal elements
of I — T are less than or equal to 0 and, since 7" is nilpotent,
that all of the eigenvalues of I — 7" are equal to 1. There-
fore, I — T is an M-matrix. Also, by construction, M — T <
L+U,M—-T+#0,and M — T > 0. Clearly, the identity is
an M-matrix and L+ U > 0 for Jacobi. Taking M; = I,
Ni=L+U, My=(I—-T), No=(M—T), and applying
Theorem 9 yields the desired result.]

3.2 Computational Complexity and Storage
Analysis

Let the number of non-zero elements in matrix A4,,,, be NNZ.
The number of operations for solving the Az = b using Jacobi
and Gauss-Seidel is approximately NNZ + 2n in each itera-
tion [5]. Since the PJG method is basically an embedded
Jacobi inside the GS algorithm, it has the same number of
multiplication operations. Likewise, the computational com-
plexity of PJG is 7kn, where k is the number of iterations to
solve the linear system. The storage requirement to store the
A matrix in a sparse CSR format is 2NNZ + n + 1. Addition-
ally, vectors z*, z};"!,, and b must be stored during the itera-
tion process of PJG. Therefore, the total amount of storage
required for our proposed method is approximately

ONNZ +n+1+2n+1~2NNZ+3n+1,

40

35

25

Frequency
2

=

10 20 30 40 50 B0 70
Number of Iterations to Converge

(a) Frequency of Iteration Number

Fig. 1. Convergence analysis of the numerical example.

1457
TABLE 1
Computational Complexity and Storage Analysis
. Number of Operations ~ Computational

Algorithm Per Iteration Complexity Storage (CSR)
PIG NNZ +2n Tkn 2NNZ +3n+1
Jacobi NNZ +2n Tkn 2NNZ + 4n
Gauss-Seidel NNZ +2n Tkn 2NNZ + 3n
BiCG 2NNZ + 8n 18kn 2NNZ +8n
BiCGStab 2NNZ + 11n 21kn 2NNZ +Tn
TFQMR 2NNZ +8n 18kn 2NNZ +Tn
GMRES NNZ + (2v+1)n 6kn + k*n 2NNZ + 2kn + Kk

where [is the size of the Jacobi block (between 1 to n). The
computational complexity and storage requirement of sev-
eral iterative solvers has been discussed in [5], [28], [29],
[30] and a summary is presented in Table 1. Here, BiCG,
BiCGSTAB, GMRES, and TFQMR refers to Biconjugate Gra-
dients, Biconjugate Gradients Stabilized, Generalized Mini-
mum Residual, and Transpose-free Quasi-minimal Residual
methods, respectively.

3.3 Sensitivity to the Choice of Dol

Recall that our method converges for all of the Dols and
Corollary 8 suggests the possibility of a faster convergence
by properly choosing matrix 7. However, it is difficult to
predict a priori which partition produces the best result.
Here, we investigate the distribution of the spectral radius
of our method on (0,1) numerically. To that end, we con-
sider the following diagonally dominant linear system, con-
struct all possible Dols, and calculate the spectral radius of
the proposed method for each Dol.

9 2 1 5]1[m: 1
5 14 1 7 ||a| |1
4 8 15 2 ||as| |1 (18)
3 4 5 13| 1

Fig. 1a shows the frequency plot of the number of itera-
tions to reach convergence. As can be seen, the proposed
method mostly converged in 11 or fewer iterations, while
only one permutation required 80 iterations. Further investi-
gation revealed that the permutation with 80 iterations cor-
responds to Jacobi (recall that a Dol in our method retrieves
Jacobi), which generally requires more iterations to

0.3

&
E
E
z

0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 09
Spectral Radius

(b) Normalized Probability of Spectral Radius

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

1458

converge compared with GS. This discovery is in line with
the theoretical position that the convergence rate of the pro-
posed algorithm is generally better than Jacobi. We also
assess the change in the spectral radius of Eq. (5) for all of
the possible permutations. The normalized probability dis-
tribution shown in Fig. 1b confirms that the spectral radius
always remained less than one. The radii value of 0.9 relates
to the Jacobi method, and 0.24 refers to the GS. It is notice-
able that the spectral radius of the iteration matrix in the
proposed method has a very high probability to remain
close to GS. Generally, a smaller spectral radius means
fewer iterations, which results in faster execution time.

4 PARALLEL IMPLEMENTATION IN MATLAB

In this section we examine the performance of the proposed
method on CPU and GPU architectures and provide a fair
comparison with Krylov solvers. The built-in numerical and
linear algebra functions in MATLAB are suitable for this pur-
pose because they are highly efficient, developed to exploit
parallelism by default, and can target different architectures.
Also, since partial matrix-vector multiplication is the core of
our algorithm, and the vectorization techniques in MATLAB
allow this part of the code to be parallelized efficiently, we
implement and examine our method in this platform.

4.1 Algorithm

In general, each iteration of the proposed algorithm can be
implemented in ¢ “mini-steps,” where ¢ is the number of sub-
matrices in the set P = {P, |i = 1,...,¢} C Mat,«,(R). In the
first step, we chose a block of vector x according to P, and per-
form the Jacobi operation to update the respective unknown
values independently and in parallel. The updated values are
stored in a separate vector, Z, to avoid overwriting the initial =
values. In the second step, we replace the old values of = with
the updated ones in £, and perform the same operation as in
the previous step but with F%. This operation continues until
all of the P matrices are applied. The order in which the
unknown variables are updated independently (i.e., Jacobi
mini-steps) depends on how the P, matrices are defined and
applied. In our implementation, we perform the Jacobi
updates in fixed-size contiguous blocks, starting from the first
entry of vector z in each block, for two reasons:

e Algebraic operations are performed on continuous
chunks, and because MATLAB stores the array data
in a contiguous block of memory, higher perfor-
mance is achieved.

e The code is less complex and more efficient.

Algorithm 1 shows the vectorized implementation of the

PJG iterative method in MATLAB. The number of computa-
tional threads can be controlled by changing the value of N
in maxNumCompThreads(N) function. As it can be seen,
process synchronization primitives are not required because
all threads are working on a single section (i.e., block) with
no data dependency. Synchronization mechanisms such as
mutex, signal, locks, etcetera are needed when threads are to
access a shared resource that might be updated by another
thread at the same time. Synchronization between processors
has the unfortunate side effect of increased latency, which
leads to a longer execution time.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

4.2 GPU Implementation

GPUs are equipped with a massive number of processors
that can deliver extremely high computational throughput
for computationally intensive and inherently parallel appli-
cations. However, programming for GPUs is notably differ-
ent from traditional CPUs and requires additional effort
and time. MATLAB provides tools and functions for this
purpose that significantly reduce the programming effort.
Basically, Algorithm 1 will automatically execute on a GPU
by converting A, b, and = to GPU arrays using gpuArray
function. However, there are two limitations with MATLAB
linear algebra libraries for GPU implementation in this case.
First, array indexing is not supported for sparse matrices.
Second, there is significant performance loss in matrix oper-
ations when array indexing is applied because MATLAB
makes a strided memory copy of the array to perform the
operation. The latter issue negatively impacts the perfor-
mance of the algorithm because it highly relies on the array
indexing.

Algorithm 1. Vectorized Implementation of the PJG
Algorithm in MATLAB for Solving Az = b

Input: matrix A = (a;;);<; j<,
vector b = (b;), <,
psize // size of Jacobi partition
Output: solution vector z = (2;);,,,
1: x « (0,0,...,0), // initial guess
2: d + —diag(A4) // diagonal entries of A
3: while residual > eand iter < maxiter do
4: iter =iter +1
5: forbegin < 1 to n by psize do
6: end — begin + psize
7.
8

ifend > nthenend < n
sum «— A(begin:end,1:n) *x

9: + d(begin:end) -* z(begin:end)
10: z(begin:end) « (sum - b(begin:end))
11: ./ d(begin:end)

12: end
13: residual < norm(A4 * z — b)/norm(b)
14: end

Several strategies to overcome this problem were
tested, and among them, the transposed-multiply oper-
ated much faster. First, matrices in MATLAB are stored in
column-major format, and picking out specific columns is
more efficient than picking out certain rows. Second,
according to the MATLAB support team, gpuArray matrix
multiplication is optimized for the transposed-times case.
Therefore, we replaced the A(begin:end, :)xz operation
with Aypens(;, beginiend)*z in Algorithm 1, where Ajq
contains the transpose of coefficient matrix A. As illus-
trated in Fig. 2, row-block multiplication using the trans-
posed matrix runs about 3-5x faster than the non-
transposed one. MATLAB creates a copy of that block in
both cases, but clearly, the entire operation is faster when
using transposed matrices. Interestingly, the execution
time for full matrix-vector multiplication is identical in
both cases. Although our strategy improves the overall
performance, it is expected to exhibit more speedup if the
code is developed in other programming platforms such
as CUDA.

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

AHMADI ETAL.: A PARALLEL JACOBI-EMBEDDED GAUSS-SEIDEL METHOD

— % — Original *
16 - —-6-— Transposed // \
7

14 - it \

—_ * \
/

Z 12 y \
= Vi \
o / \
£ 10 e \
. , \
5] 7 \
g 8 4 \
5 s
S 6 _ 3§
m* - .-

4 / -~

7 -
’ G
4 o g
2 / PR
¥ o
&= —@ == ol | | | |
500 1k 2k 5k 10k 15k 20k Full

Row-Block Size

Fig. 2. Performance comparison of Matrix-Vector multiplication strate-
gies with the change in row-block size on Tesla V100. Average execution
time is measured by gputimeit function for 100 trials, and matrix dimen-
sion is 25 000.

5 PERFORMANCE ESTIMATE OF SPMV

Sparse matrix-vector multiplication (SpMV) and the num-
ber of iterations are the main factors that affect an iterative
solver’s performance. Accurately estimating the perfor-
mance of SpMV on CPU and GPU is challenging because of
the diverse property of sparse matrices and differences in
processors architecture. Also, SpMV operation’s perfor-
mance for a specific sparse matrix may vary depending on
the employed sparse storage format. [31] proposed a simple
method to estimate the performance of SpMV on CPUs for
the coordinate list (COO) format. Given the number of non-
zero elements in COO format (NNZ), frequency of the CPU
(f), and the number of CPU cores (nc) assigned to perform
the SpMV operation, the SpMV compute time can be
approximately estimated by (2« NNZ)/(f x nc). This infor-
mation was used to enhance the SpMV performance by
adopting a hybrid CPU-GPU parallel programming model.
Other hybrid methods for enhancing the speed of SpMV
have been investigated in [32], [33]. An auto-tuning system
was developed in [34] to automatically determine the opti-
mal sparse storage format for faster SpMV operation given
a sparse matrix in CSR format. Similarly, an auto-tuning
library for the CSR format based on machine learning and
retargetable back-end library was proposed in [35], and per-
formance improvement of up to 2.5 times was achieved
compared with Intel MKL. Several attempts have been
made to model and optimize the SpMV operation on GPUs
based on probabilistic models [36], [37]. Partitioning of the
coefficient matrix is a technique used to address the imbal-
ance in the computational load of processors due to sparse
matrices’ irregular sparsity pattern. However, this method
adds communication overhead during the parallel compu-
tation of SpMV. [7] proposed a novel method to reduce the
latency overhead of partitioned based SpMV and scale the
performance of iterative solvers.

The most time-consuming element in iterative solvers is
the matrix-vector (MV) operation because it is repeatedly
performed in each iteration. Because our proposed meth-
od’s performance largely depends on this operation, we

1459

TABLE 2
Coefficients for Linear Regression Models for Performance
Estimation of Matrix-Vector Multiplication on CPU and GPU

Constant a b c d e
CPU —100.1 0.02052 -15.79 0.9664 30.64 -2.19
GPU 4.116 6.318E-4 -6.761 -0.9741 - -

For example, the regression formula for CPU performance is —100.1+
0.02052a — 15.79b + 0.9664c¢ + 30.64d — 2.19e.

have developed a simple regression model to estimate the
speed of MV and SpMV for compressed sparse column
(CSC) format on CPU and GPU platforms. Our dataset is
unique in terms of size and sparsity pattern of matrices
(more than 10,000 matrices with sparsity ranging from 0 to
90 percent), the number of utilized CPU cores (2 to 20 cores),
and the diversity of processor architectures (six CPUs and
four GPUs). Double-precision was selected to store the
matrices and perform the computations. This dataset is
available for download as a part of the supplementary
materials, which can be found on the Computer Society Dig-
ital Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2021.3052091. This proposed regression model can be
used to 1) estimate the performance of a single iteration in
an iterative solver, 2) help in modeling and optimizing
SpMV operation.

We have performed comprehensive testing to determine
the best fitting variables. These parameters and their respec-
tive coefficients are presented in Table 2. R-squared, which
is a measure of how close the data are to the fitted line, for
both models is close to 65 percent. That is, the model
explains about 65 percent of the variability of the CPU
(GPU) performance data around its mean. For CPU plat-
forms, a refers to the dimension of the coefficient matrix
(use n for A,.,), b is the sparsity level of the A matrix
(between 0 and 1, where zero refers to a fully dense matrix),
c is the ratio of available cores to the utilized cores, d is the
ratio of maximum processor clock to the base clock, and e is
the cache size (in megabyte). For GPUs, a and b are similar
to the CPU model, but c refers to the device double-preci-
sion performance in TeraFLOPS (available in the device
manual). Refer to the dataset file for details about hardware
devices used in the testing, as well as the complete informa-
tion about the regression models.

6 EXPERIMENT SETUP

6.1 Hardware and Software Configuration

The computer system used in this study is equipped with
two Intel Xeon Gold 6148 processors and four NVIDIA
Tesla V100-SXM2-16GB GPUs that are connected via NVI-
DIA NVLink. Each CPU has 20 cores with Advanced Vector
Extension 512 (AVX-512) instruction set, which provides
512-bit wide vector operations, and two Fused Multiply
Add instructions (FMA). The base operating frequency of
each core is 2.4 GHz, which can be boosted up to 3.7 GHz.
Tesla V100-SXM2 is currently one of the most advanced
GPUs in the market. This GPU has 5,120 CUDA cores with
a boost clock frequency of 1530 MHz, 16 GB of memory,
and can achieve up to 7.8 TFLOPS in double-precision arith-
metic. The operating system of the machine is Oracle Linux

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.3052091
http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.3052091

1460 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021
TABLE 3
Performance Comparison of Iterative Solvers on Multicore CPU
Average Iteration Average Time (s) Avg. Time Per Iteration (s)
n 10K 20K 30K 40K 10K 20K 30K 40K 10K 20K 30K 40K
GS 10.97 12.2 12.78 13.39 7.03 46.02 168.9 416.7 0.64 3.77 13.21 31.11
PJG-500 11.25 12.33 12.87 13.48 3.64 16.46 37.99 72.99 0.32 1.33 2.95 5.41
PJG-1500 11.78 12.66 13.10 13.66 3.52 15.83 35.8 67.65 0.30 1.25 2.73 4.95
PJG-2500 12.42 12.95 13.31 13.83 3.67 16.00 35.6 67.35 0.30 1.24 2.68 4.87
PJG-3500 12.98 13.22 13.53 14.01 3.81 16.26 35.94 66.88 0.29 1.23 2.66 4.78
Jacobi 22.54 23.72 24.54 26.77 6.67 29.33 69.83 138.38 0.30 1.24 2.85 5.17
CGS 2.15 2.16 2.13 2.16 0.08 0.30 0.64 1.21 0.04 0.14 0.30 0.56
BiCG 3.02 3.01 3.01 3.01 0.10 0.40 0.87 1.57 0.03 0.13 0.29 0.52
BiCGSTAB 1.51 151 1.50 1.50 0.06 0.25 0.54 0.97 0.04 0.17 0.36 0.65
GMRES 3.01 3.00 3.00 3.00 0.06 0.26 0.54 0.97 0.02 0.09 0.18 0.32
QMR 3.02 3.01 3.01 3.01 0.10 0.42 0.88 157 0.03 0.14 0.29 0.52
TFQMR 1.95 1.90 1.83 1.81 0.08 0.31 0.64 1.18 0.04 0.16 0.35 0.65
A\b — — - — 2.34 14.33 41.07 92.42 — - - -
Server 7.7, and all coding and testing have been accom-
plished in MATLAB 2020a. A= (a). . = sampled in [§in, 8an] if ¢ # 7,
LI 1<i j<n Zi;ﬁj!Aij’ + 4 otherwise.

6.2 Simulation Settings

Our simulation setting covers a wide range of problems and
methods to provide a comprehensive performance report.
For this reason, we set up the simulations as follows:

e Algorithms are tested on randomly generated sys-
tems of dense linear equations with the dimension
ranging from 10,000 to 40,000.

e The number of test matrices is limited to 1,500 and
1,000 for 10K and 20K systems, respectively. For
larger systems, this number is set to 500.

e Simulation stops when the relative residual becomes
less than 10~?, or the iteration number reaches 50.

e The test computer has a total of 40 cores. The number
of threads is set to eight for each simulation to allow
four simulations to run on the machine at the same
time.

e Hyper-threading is disabled on this machine to limit
the number of threads per core to one since the simu-
lations are CPU-bound.

e Test matrices are generated and stored in double-
precision format. All computations are also carried
in double precision.

Memory and simulation time are the two main factors in
choosing the parameters mentioned above. In fact, a single
simulation in our study contains more than twenty sub sim-
ulations. Completing the whole experiment takes about
four days, even though we utilized all hardware resources
to simulate multiple cases at the same time.

6.3 Generating Problem Instances

The non-symmetric, diagonally dominant matrices in this
study are randomly generated according to the following
rules. Let X ~U[-1,1] and Y ~ U[l,n] be uniform and
independent random variables. Let §; and 8, be sampled
from X with §; < 83, and 8, be sampled from Y. The coeffi-
cient matrix A is formed as,

All random values are generated using MATLAB's uni-
formly distributed random number generator. For simplic-
ity, the right-hand side vector b is set to one, and vector « is
initialized with zeros.

7 EXPERIMENTAL RESULTS

In this section, we investigate the performance of the PJG
algorithm for various settings on both manycore and multi-
core architectures. The analysis is focused on the number of
iterations to reach the solution, average run time, and per
iteration computation time. We compare our algorithm
with Krylov subspace methods and refer the interested
reader to [38] and [2] for details. In this paper, CGS, BiCG,
BiCGSTAB, GMRES, QMR, and TFQMR refers to Conjugate
Gradients Squared, Biconjugate Gradients, Biconjugate Gra-
dients Stabilized, Generalized Minimum Residual, Quasi-
minimal Residual, and Transpose-free Quasi-minimal
Residual methods, respectively.

7.1 Performance Evaluation on Multicore CPUs
Performance results on multicore CPU are presented in
Table 3. The value following PJG refers to the Jacobi block
size (psize variable) in Algorithm 1. Changing the psize
value to one or n corresponds to the GS and Jacobi solvers,
respectively. Important observations from the results are:

1) PJG outperformed GS with 2-7 times faster computa-
tion time. Parallelization of the Jacobi block signifi-
cantly reduces the effort per iteration compared with
GS. In terms of iteration count, PJG convergence is
observably close to GS, with a maximum of three
more iterations when the Jacobi block size is 3,500.
Indeed, there is a trade-off between the block size
and the number of iterations, and parameters should
be optimized for different problems and hardware

architectures.

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

AHMADI ETAL.: A PARALLEL JACOBI-EMBEDDED GAUSS-SEIDEL METHOD

2)

3)

4)

7.2

TABLE 4
Performance Comparison of lterative Solvers on GPU (Includes Host-GPU-Host Data Transfer Time)

1461

Average Time (s)

Avg. Time Per Iteration (s)

n 10K 20K 30K 40K 10K 20K 30K 40K
PJG-500 0.58 1.49 2.86 5.19 0.05 0.12 0.21 0.38
PJG-1500 0.52 1.38 2.84 4.86 0.04 0.11 0.19 0.36
PJG-2500 0.51 1.37 2.87 485 0.04 0.11 0.18 0.35
PJG-3500 0.51 1.37 2.87 4.84 0.04 0.10 0.17 0.35
Jacobi 0.54 1.46 2.96 5.24 0.02 0.06 0.12 0.20
CGS 1.23 1.79 2.66 3.99 0.57 0.82 1.26 1.84
BiCG 1.22 1.79 273 4.26 0.40 0.59 091 1.41
BiCGSTAB 1.22 1.78 2.71 4.19 0.81 1.18 1.81 2.78
GMRES 1.22 1.78 273 4.16 0.41 0.59 0.91 1.39
QMR 1.23 1.80 2.77 4.21 0.41 0.60 0.92 1.40
TFQMR 1.22 1.78 2.74 4.14 0.63 0.94 1.51 2.28
PJG and Jacobi have similar computational time per 1) Compared with GS on CPU, PJG performed 13, 33,
iteration, but Jacobi requires twice the number of iter- 58, and 87 times faster for 10K, 20K, 30K, 40K sys-
ations, which results in a around twice the simulation tems, respectively, which is exceptional. To the best
time. Jacobi time can be further improved if more of our knowledge, this is the highest reported
CPU cores are utilized, but in general, this is not speedup in the literature at the time of this writing
always the case due to the limitation in the hardware for algorithms that belong to this category.
resources and the problem size. Also, GS has better 2) An average of 7 to 14 times speed improvement can
convergence property and is more stable than Jacobi, be observed between the PJG implementation on
especially for weakly diagonally dominant matrices. GPU and CPU. Accounting for the overhead associ-
In the simulations, the Krylov methods perform con- ated with MATLAB’s GPU library for array index-
siderably better than stationary methods in terms of ing, we believe that more speedup could be achieved
iteration count and time. Iteration count is always using C and cuBLAS, or CUDA.
problem dependent and can substantially change 3) On the CPU, Jacobi requires twice the simulation time
[5]. However, Krylov methods are computationally as PJG. However, the average run time of Jacobi on
cheap and can easily beat PJG even if they need 8-15 GPU is only slightly higher than PJG. The key reason
times more iterations to converge. According to the behind this improvement is the superior performance
MATLAB documentation, Generalized Minimum of GPUs in algebraic operations that resulted in much
Residual (GMRES) is the most stable among the Kry- lower computation time per iteration for Jacobi.
lov methods, but the work and memory storage 4) Interestingly, the MATLAB built-in Krylov solvers

requirement grows linearly with iteration count. Pro-
vided that GMERS converge in around three itera-
tions in this study, it is possible that the reported
average time for this method dramatically changes
for more difficult problems.

Lastly, MATLAB’s A\b command is used to measure
the performance of direct solvers. Although these
techniques provide an exact solution, the computa-
tional effort and memory requirement exponentially
grow with the system size. These reasons make itera-
tive solvers more favorable for solving large linear
systems.

Performance Evaluation on Many-Core GPUs

We also analyze the performance of iterative methods on
Tesla V100 GPUs for the same test cases. In this scenario,
GS only performed 30 percent better than its CPU imple-
mentation because of the overhead from memory copy
in MATLAB (discussed in Section 4.2) and the sequential
nature of this algorithm. Also, we were not able to exam-
ine direct methods for systems larger than 10K because
the storage requirement of the algorithm was beyond the
device memory. The performance for all other methods
is shown in Table 4, and findings are as follows:

120%

100%

PJG Performance Improvement

80%

60%

40%

20%

-20%

-40% i

-60% ! !

performed 1.5-3.5x slower on GPU compared with
their CPU implementation. We investigated this per-
formance degradation by profiling each algorithm but
could not determine a common part of the code that
causes this issue. In terms of average simulation time
on GPU, both PJG and Krylov methods have similar

.
[10,000 [30,000
[20,000 [40,000

0%

BiCG-Stab GMRES QMR TFQMR

CGS BiCG

Fig. 3. Comparison of iteration time improvement between PJG-GPU
and Krylov-CPU.

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

1462

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

TABLE 5
Comparison of Iterative Methods for Solving Quasi- and Block- Tridiagonal Systems (Time and lteration Number)

Quasi-Tridiagonal Block-Tridiagonal

n ~ 50% ~70% ~90% Ref [39] PG
Ref [5] PG Ref [5] PJG Ref [5] PIG

50,176 0.175 (18) 0.971 (44) 0.378 (37) 0.716 (26) 1.600 (152) 0.740 (12) 0.133 (19) 0.264 (20)
200,704 0.785 (19) 7.017 (76) 1.515 (31) 2.088 (19) 10.52 (125) 3.026 (12) 0.464 (19) 1.077 (19)
640,000 2.288 (17) 73.66 (250) 4.210 (26) 10.58 (30) 16.00 (82) 7.986 (12) 1.471 (20) 3.817 (19)
1,000,000 3.336 (16) 52.42 (113) 8.289 (31) 11.97 (20) 34.65 (95) 15.35 (12) 2.366 (21) 5.787 (18)
4,000,000 15.88 (17) 1831.06 (878) 37.86 (31) 59.29 (22) 163.32 (89) 61.94 (12) 10.39 (45) 25.55 (19)

results. However, PJG is 4-8 times faster in terms of
iteration time, which makes it more desirable for
problems that are also difficult for Krylov methods.

5) The average iteration time of Krylov methods on
CPU is comparable with PJG on GPU, which is
worth further investigation. As can be seen in Fig. 3,
PJG-3500 outperformed the majority of Krylov tech-
niques for systems larger than 10K. GMRES is the
only algorithm that achieved slightly better perfor-
mance. However, as we mentioned earlier, the work
and memory storage requirement for this method
grows linearly with iteration count. The legends in
Fig. 3 refer to system size.

8 COMPARISON WITH SPECIAL SOLVERS

The performance of iterative solvers depends on the struc-
tural and spectral properties of the linear system. Some
algorithms are specifically designed to solve systems with
input matrices that have diagonal, tridiagonal, Hermitian,
etc., property to achieve higher performance. In this section,
we compare our method’s performance with proposed
methods in [39] and [5] for solving block-tridiagonal and
quasi-tridiagonal linear systems, respectively.

Test matrices are generated using the gallery function of
Matlab to allow for reproducibility of the results. Sparse
block-tridiagonal matrices are derived from the Poisson equa-
tion and quasi-tridiagonal systems are created in the form of
A =T+ S5, where T is a tridiagonal matrix and S is a random
sparse matrix with non-zero values outside the three diago-
nal. Because the density of sparse matrix S could vary, three
problem instances have been produced for each system size
where the ratio of the number of non-zero elements (nnz) in S
(nnz(S)) over nnz(A) is close to 50, 70, and 90 percent. Addi-
tionally, because these iterative algorithms are only guaran-
teed to converge for strictly diagonally dominant matrices,
the diagonal values in the resulting quasi-tridiagonal matrix
A have been set to the sum of non-diagonal elements in each
row. The generated block-tridiagonal matrices are diagonally
dominant. Thus, each diagonal element is scaled by a factor
of 1.1 to make them strictly diagonally dominant. Also, vector
bin Az = b has been set to an array of all ones.

Different implementations of block-tridiagonal and quasi-
tridiagonal solvers have been proposed in the reference
papers to improve the execution speed by performing part of
the calculations in parallel (i.e., CPU, GPU, block parallel,
etc.), which has minor or no impact on the number of itera-
tions. Our comparison aims to observe these algorithm’s gen-
eral behavior for solving tridiagonal systems and not to

compare the exact execution time. In fact, it is always possible
to further fine-tune these implementations and slightly
improve the overall performance. In this study, we only
implement and compare the originally proposed algorithms
in these papers (Algorithm 1) on multicore CPUs. Addition-
ally, to avoid any performance degradation due to an ineffi-
cient code, only high-performance MATLAB functions
together with array indexing, are utilized to develop the itera-
tive solvers.

Table 5 shows the performance of each solver in terms of
computation time in seconds and the number of iterations
to reach the stopping tolerance of 1075 (values in parenthe-
ses). Observations are as follows:

1) The Quasi-Tridiagonal solver is significantly faster
than PJG when the S matrix is very sparse. However,
when the ratio of nnz(S) over nnz(A) approaches
one, PJG outperforms the proposed solver. In partic-
ular, PJG requires fewer iterations for denser matri-
ces, which explains the improved performance.

2) The block-tridiagonal solver is 2x—2.5x faster than
PJG in all cases. In fact, the P]JG performance declined
with an increase in the system size, although the
number of iterations remained almost the same.

Although the examined solvers performed better than

PJG in most cases, note that they only work for strictly diag-
onally dominant systems with unique matrix structure
while PJG only requires the matrix to be strictly diagonally
dominant and does not need any matrix structure. That is,
PJG is designed for a more general case.

9 APPLICATION IN POWER SYSTEM ANALYSIS

To further demonstrate the advantage of the proposed algo-
rithm, we apply it to the power flow (PF) problem in the elec-
tric industry. PF is one of the most widely used numerical
studies in the planning and steady-state analysis of power
systems. The primary objective of PF calculations is to deter-
mine the voltage values at different nodes, real and reactive

TABLE 6
Power System Test Cases
Test Case System Size nnz
IEEE 118 118 x 118 476
IEEE 300 300 x 300 1,118
PEGASE 1,354 1354 x 1354 4,774
POLISH 2,736 2736 x 2736 9,262

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

AHMADI ETAL.: A PARALLEL JACOBI-EMBEDDED GAUSS-SEIDEL METHOD

TABLE 7
Performance Comparison of Gauss-Seidel With
PJG for Solving the PF Problem

Iterations Time (s)
Case
GS PIG GS PIG
IEEE 118 282 315 0.24 0.07 (3.4x)
IEEE 300 1,537 1,851 3.33 0.37 (9.0x)
PEGASE 1354 10,184 11,915 291.7 8.3 (34.9x)
POLISH 2736 34,766 51,236 4768.9 54.6 (87.3x)

power flows in transmission lines, and network losses. These
variables are found by solving a set of non-linear nodal
power balance equations. Among different techniques to
obtain the solution of PF, Newton-Raphson, Fast Decoupled,
and Gauss-Seidel are the most common. These methods are
well discussed in power system analysis books (see, e.g., [40]).

The convergence of GS becomes relatively slow for large
power systems due to its sequential nature. To evaluate the
effectiveness of the proposed algorithm in addressing this
issue, we integrated the PJG code into the MATPOWER[41]
application. MATPOWER is a well-known, high perfor-
mance, and open-source power system simulation package
based on MATLAB. The benchmark test cases in Table 6 are
available in the MATPOWER 7.0 package. Typically, power
system matrices are very sparse because each bus is con-
nected to an average of three other nodes. Comparing the
number of nonzero elements to the system size indicates a
sparsity level of 70 to 99 percent in the test cases.

By default, MATPOWER utilizes sparse matrix storage
formats to maximize performance. This matter will not
impact the implementation of our algorithm since MATLAB
performs all operations for sparse matrices seamlessly.
After carrying out multiple simulations, we observed that
using 50 percent of the system size as the length of the
Jacobi block will result in peak performance for almost all
cases. Since these systems are highly sparse, increasing the
number of threads to more than four did not improve the
runtime. Results in Table 7 show that despite the increase in
the number of iterations, PJG is considerably faster than the
original GS. For instance, solving the POLISH system using
GS required 79 minutes while PJG completed the computa-
tion in less than one minute.

10 CONCLUSION

In this research, we develop a new iterative method based
on Jacobi and GS for solving linear systems of equations.
The proposed algorithm’s convergence rate is observably
close to GS, but the performance is up to 7x faster on mul-
ticore CPUs and 87x on many-core GPUs for dense sys-
tems in this study. The performance can further be
improved by tuning the number of threads and adjusting
the Jacobi block size. Selecting the proper solver is prob-
lem dependent and requires prior knowledge of the sys-
tem. For the scientific problems that are directly solved by
the GS method, such as power flow analysis, we recom-
mend using the PJG algorithm. For other problems, if a
GPU is available, our proposed solver is a good candidate;
otherwise, we suggest using Krylov techniques because of
their small computational requirement. Additionally,

1463

parallel Jacobi is the simplest approach to compute a pre-
conditioner, but it is not very useful due to the resulting
larger number of iterations compared to other variants
such as SSOR. In this case, PJG is a good alternative since
it has superior convergence property and comparable exe-
cution time. Our algorithm’s bottleneck is the speed of
matrix-vector multiplication, and we believe that with the
advancement of computing resources, PJG may become a
viable choice in the future. Further work will focus on
developing our algorithm using C, Intel MKL, and
cuBLAS to obtain maximum performance since MATLAB
overhead, especially for GPU libraries, is high. Our future
work will also cover solving sparse systems on GPUs.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Timo Heister and Dr.
Edward R. Collins for their valuable comments. This research
was supported in part by the NSF-MRI Award 1725573.

REFERENCES

[1]1 A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics,
vol. 37. Berlin, Germany: Springer, 2010.

[2] D.M. Young, Iterative Solution of Large Linear Systems. Amsterdam,
The Netherlands: Elsevier, 2014.

[3] M. Kawai, T. Iwashita, H. Nakashima, and O. Marques, “Parallel
smoother based on block red-black ordering for multigrid poisson
solver,” in Proc. Int. Conf. High Perform. Comput. Comput. Sci., 2012,
pp- 292-299.

[4] I Yamazaki, J. Kurzak, P. Wu, M. Zounon, and]. Dongarra,
“Symmetric indefinite linear solver using OpenMP task on multi-
core architectures,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 8,
pp- 1879-1892, Aug. 2018.

[5] K. Li, W. Yang, and K. Li, “A hybrid parallel solving algorithm on
GPU for quasi-tridiagonal system of linear equations,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 10, pp. 27952808, Oct. 2016.

[6] D. Zaitsev, S. Tomov, and J. Dongarra, “Solving linear diophan-
tine systems on parallel architectures,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 5, pp. 1158-1169, May 2019.

[7] R. O. Selvitopi, M. M. Ozdal, and C. Aykanat, “A novel method
for scaling iterative solvers: Avoiding latency overhead of parallel
sparse-matrix vector multiplies,” IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 3, pp. 632-645, Mar. 2015.

[8] T. Tsuburaya, Y. Okamoto, and Z. Meng, “Improvement of block
IC preconditioner using fill-in technique for linear systems
derived from finite-element method including thin elements,”
IEEE Trans. Magn., vol. 54, no. 3, pp. 1-4, Mar. 2018.

[9]1]. M. Ortega, Introduction to Parallel and Vector Solution of Linear Sys-
tems. Berlin, Germany: Springer, 2013.

[10] Z. Wu, Y. Xue, X. You, and C. Zhang, “Hardware efficient detec-
tion for massive MIMO uplink with parallel gauss-seidel meth-
od,” in Proc. 22nd Int. Conf. Digit. Signal Process., 2017, pp. 1-5.

[11] A. Bartel, M. Brunk, M. Gunther, and S. Schops, “Dynamic itera-
tion for coupled problems of electric circuits and distributed
devices,” SIAM . Sci. Comput., vol. 35, no. 2, pp. B315-B335, 2013.

[12] Y. Shang, “A distributed memory parallel gauss—seidel algorithm
for linear algebraic systems,” Comput. Math. Appl., vol. 57, no. 8,
pp- 1369-1376, 2009.

[13] Z.Feng, Z. Zeng, and P. Li, “Parallel on-chip power distribution net-
work analysis on multi-core-multi-GPU platforms,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 10, pp. 1823-1836,
Oct. 2011.

[14] H. Courtecuisse and J. Allard, “Parallel dense gauss-seidel algo-
rithm on many-core processors,” in Proc. 11th IEEE Int. Conf. High
Perform. Comput. Commun., 2009, pp. 139-147.

[15] P. Di, H. Wu, J. Xue, F. Wang, and C. Yang, “Parallelizing SOR for
GPGPUs using alternate loop tiling,” Parallel Comput., vol. 38, no. 6/7,
pp- 310-328, 2012.

[16] D. P. Koester, S. Ranka, and G. C. Fox, “A parallel gauss-seidel
algorithm for sparse power system matrices,” in Proc. ACM/IEEE
Conf. Supercomputing, 1994, pp. 184-193.

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

1464

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 6, JUNE 2021

P. Amodio and F. Mazzia, “A parallel Gauss-Seidel method for
block tridiagonal linear systems,” SIAM J. Sci. Comput., vol. 16, no. 6,
pp- 1451-1461, 1995.

G. H. Golub and J. M. Ortega, Scientific Computing: An Introduction
With Parallel Computing. Amsterdam, The Netherlands: Elsevier,
2014.

A. Ahmadi, S. Jin, M. C. Smith, E. R. Collins, and A. Goudarzi,
“Parallel power flow based on OpenMP,” in Proc. North Amer.
Power Symp., 2018, pp. 1-6.

R. Tavakoli and P. Davami, “A new parallel Gauss-Seidel method
based on alternating group explicit method and domain decomposi-
tion method,” Appl. Math. Comput., vol. 188, no. 1, pp. 713-719, 2007.
M. F. Adams, “A distributed memory unstructured gauss-seidel
algorithm for multigrid smoothers,” in Proc. ACM/IEEE Conf.
Supercomputing, 2001, pp. 14-14.

J. Zhang, “Acceleration of five-point red-black Gauss-Seidel in mul-
tigrid for poisson equation,” Appl. Math. Comput., vol. 80, no. 1,
pp- 73-93, 1996.

K. S. Kang, “Scalable implementation of the parallel multigrid
method on massively parallel computers,” Comput. Math. Appl.,
vol. 70, no. 11, pp. 2701-2708, 2015.

X.Yang and R. Mittal, “Efficient relaxed-jacobi smoothers for multi-
grid on parallel computers,” J. Comput. Phys., vol. 332, pp. 135-142,
2017.

M. Rodriguez, B. Philip, Z. Wang, and M. Berrill, “Block-relaxa-
tion methods for 3D constant-coefficient stencils on GPUs and
multicore CPUs,” 2012, arXiv:1208.1975.

R. Bagnara, “A unified proof for the convergence of jacobi and
gauss-seidel methods,” SIAM Rev., vol. 37, no. 1, pp. 93-95, 1995.
[Online]. Available: https:/ /www.jstor.org/stable/2132758

W. Li, L. Elsner, and L. Lu, “Comparisons of spectral radii and the
theorem of stein—rosenberg,” Linear Algebra Appl., vol. 348, no. 1/
3, pp- 283-287, 2002.

Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia,
PA, USA: SIAM, 2003.

D. Bertaccini and F. Durastante, Iterative Methods and Precondition-
ing for Large and Sparse Linear Systems With Applications. Boca
Raton, FL, USA: CRC Press, 2018.

K. Abe, T. Sogabe, S. Fujino, and S. Zhang, “A product-type kry-
lov subspace method based on conjugate residual method for non-
symmetric coefficient matrices,” IPS] Trans. Adv. Comput. Syst.,
vol. 48, pp. 11-21, 2007.

W. Yang, K. Li, and K. Li, “A hybrid computing method of SpMV
on CPU-GPU heterogeneous computing systems,” J. Parallel Dis-
trib. Comput., vol. 104, pp. 49-60, 2017.

W. Yang, K. Li, Z. Mo, and K. Li, “Performance optimization using
partitioned SpMV on GPUs and multicore CPUs,” IEEE Trans.
Comput., vol. 64, no. 9, pp. 26232636, Sep. 2015.

A. Elafrou, G. Goumas, and N. Koziris, “Performance analysis and
optimization of sparse matrix-vector multiplication on modern
multi-and many-core processors,” in Proc. 46th Int. Conf. Parallel
Process., 2017, pp. 292-301.

J. Li, G. Tan, M. Chen, and N. Sun, “SMAT: An input adaptive
auto-tuner for sparse matrix-vector multiplication,” in Proc. 34th
ACM SIGPLAN Conf. Program. Lang. Des. Implementation, 2013,
pp- 117-126.

G. Tan, J. Liu, and J. Li, “Design and implementation of adaptive
SpMV library for multicore and many-core architecture,” ACM
Trans. Math. Softw., vol. 44, no. 4, pp. 1-25, 2018.

P. Guo, L. Wang, and P. Chen, “A performance modeling and
optimization analysis tool for sparse matrix-vector multiplication
on GPUs,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 5,
pp. 1112-1123, May 2014.

K. Li, W. Yang, and K. Li, “Performance analysis and optimization
for SpMV on GPU using probabilistic modeling,” IEEE Trans. Par-
allel Distrib. Syst., vol. 26, no. 1, pp. 196-205, May 2014.

Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Phila-
delphia, PA, USA: Soc. Ind. Appl. Math., 2003. [Online]. Avail-
able: https://epubs.siam.org/doi/abs/10.1137/1.9780898718003
W. Yang, K. Li, and K. Li, “A parallel solving method for block-
tridiagonal equations on CPU-GPU heterogeneous computing sys-
tems,” The J. Supercomputing, vol. 73, no. 5, pp. 1760-1781, 2017.

J. J. Grainger and W. D. Stevenson, Power System Analysis. New
York, NY, USA: McGraw-Hill, 1994.

[41] R. D. Zimmerman, C. E. Murillo-Snchez, and R. J. Thomas,
“MATPOWER: Steady-state operations, planning, and analysis tools
for power systems research and education,” IEEE Trans. Power Syst.,
vol. 26, no. 1, pp. 12-19, Feb. 2011.

Afshin Ahmadi (Student Member, IEEE) received
the MS degree in electrical engineering from the
University of the Philippines Diliman, Philippines, in
2012, and the PhD degree in computer engineering
from the Clemson University, Clemson, South Car-
olina, in 2020. He is currently a power system appli-
cation developer at Electric Reliability council of
Texas (ERCOT). His main research interests are
high performance computing in power and energy
systems, smart grid, renewable energy, and power
system planning and optimization.

Felice Manganiello received the MS degree from
the University of Pisa, Italy, in 2005, and the PhD
degree from the University of Zurich, Switzerland,
in 2011, all in mathematics. He is an associate pro-
fessor with the School of Mathematical and Statisti-
cal Sciences, Clemson University, Clemson, South
Carolina. His research interests are in applied alge-
bra and communication with focus on coding the-
ory, network coding, and cryptography. He was the
recipient of a Swiss National Science Foundation
Postdoctoral Fellowship from 2011 to 2013, which
he spent at the Department of Electrical and Computer Engineering, Uni-
versity of Toronto, Canada. He was awarded with one of the 2019 Simons
Visiting Professorships and during the academic year 2019/20, he held a
visiting scholar position at the Cybersecurity Research Lab of Ryerson Uni-
versity, Toronto, Canada.

Amin Khademi received the PhD degree from the
University of Pittsburgh, Pittsburgh, Pennsylvania.
He is an associate professor of industrial engineer-
ing at Clemson University, Clemson, South Caro-
lina. He is interested in decision making under
uncertainty and optimal learning. He has worked
on applications such as adaptive design of clinical
trials, optimal allocation rules for organ transplanta-
tion, and infectious disease control. He is a recipi-
ent of NSF CAREER Award.

Melissa C. Smith (Senior Member, IEEE) received
the BS and MS degrees in electrical engineering
from Florida State University, Tallahassee, Florida,
in 1993 and 1994, respectively, and the PhD degree
in electrical engineering from the University of Ten-
nessee, Knoxville, Tennessee, in 2003. She is cur-
rently an associate professor of electrical
and computer engineering at Clemson University,
Clemson, South Carolina. She has more than
25 years of experience developing and implement-
ing scientific workloads and machine learning
applications across multiple domains, including 12 years as a research
associate at Oak Ridge National Laboratory. Her current research focuses
on the performance analysis and optimization of emerging heterogeneous
computing architectures (GPGPU- and FPGA-based systems) for various
application domains including machine learning, high-performance or real-
time embedded applications, and image processing. Her group collabo-
rates with researchers in other fields to develop new approaches to the
application/architecture interface providing interdisciplinary solutions that
enable new scientific advancements and/or capabilities.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Carleton University. Downloaded on September 22,2021 at 15:29:06 UTC from IEEE Xplore. Restrictions apply.

https://www.jstor.org/stable/2132758
https://epubs.siam.org/doi/abs/10.1137/1.9780898718003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

